A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Robot Arm Motion through Reinforcement Learning

The present paper discusses an optimal control method of biological robot arm which has redundancy of the mapping from the control input to the task goal. The control input space is divided into a couple of subspaces according to a priority order depending on the progress and stability of learning. In the proposed method, the search noise which is required for reinforcement learning is restrict...

متن کامل

Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching ...

متن کامل

Dual-Arm Robot Motion Planning Based on Cooperative Coevolution

This paper presents a cooperative coevolutionary approach to path planning for two robotic arms sharing common workspace. Each arm is considered an agent, required to find transition strategy from given initial to final configuration in the work space. Since the robots share workspace, they present dynamic obstacle to each other. To solve the problem of path planning in optimized fashion, we fo...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

3D Simulation for Robot Arm Control with Deep Q-Learning

Recent trends in robot arm control have seen a shift towards end-to-end solutions, using deep reinforcement learning to learn a controller directly from raw sensor data, rather than relying on a hand-crafted, modular pipeline. However, the high dimensionality of the state space often means that it is impractical to generate sufficient training data with real-world experiments. As an alternative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2020

ISSN: 1424-8220

DOI: 10.3390/s20123515